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LE’ITER TO THE EDITOR 

Hierarchical model for chemically limited cluster-cluster 
aggregation 

R Jullien and M Kolb 
Laboratoire de Physique des Solidest, Bit. 510, UniversitC Paris-Sud, Centre d’Orsay, 
91405 Orsay, France 

Received 20 June 1984 

Abstract. A hierarchical model is introduced to describe chemically limited cluster-cluster 
aggregation. The fractal dimension of the clusters, 0, as well as an exponent characterising 
the number of active sites per cluster are evaluated numerically for d = 2,3,4. The relevance 
of the model to realistic physical situation is discussed. 

Several theoretical models have been introduced to describe aggregation phenomena. 
The prototype is particle-cluster ( PCI) aggregation model of Witten and Sander (198 1)  
in which single brownian particles stick, one by one, to an immobile growing cluster. 
In the alternative cluster-cluster (CICI) aggregation model (Meakin 1983a, Kolb et al 
1983), clusters of particles as well as single particles, are allowed to diffuse together 
and the growth process is dominated by the sticking of clusters of almost the same 
size. The common feature of both models is that they describe the physical situation 
of ‘diffusion limited aggregation’ in the sense that sticking occurs at the first contact. 
As a consequence, the structure of the clusters is directly connected to the nature of 
the diffusion process. In particular the fractal dimension of the cluster, D, depends 
on the fractal dimension, d,, of the diffusive trajectory. As observed both in PCI 

(Meakin 1984b) and in cia (Meakin 1984a), D increases (the clusters become more 
compact) when d, decreases. However, in several experimental situations, it is more 
reasonable to assume that the clusters (or particles) stick only after a large number of 
contacts. This occurs when a chemical reaction is responsible for the sticking. Hence 
this is called ‘chemically limited’ aggregation in contrast with ‘diffusion limited’ 
aggregation. This situation has already been studied in the context of particle-cluster 
aggregation, when a sticking probability has been introduced for the Witten-Sander 
model (Meakin 1983b). It has been found that, for finite sticking probability, a crossover 
takes place between a small size (compact) and a large size (Witten and Sander) regime. 
In the limit of infinitesimally small sticking probability, the Eden model, with D = d,  
is recovered, since, in this limit the added particle can reach any point of the surface 
with an equal probability. To our knowledge, the same limiting situation has not yet 
been considered in the case of cluster-cluster aggregation. It is the purpose of this 
letter to introduce a model from chemically limited cluster-cluster aggregation in 
which, clusters of the same size stick, after a quasi-infinite number of trials. This is 
the analogue of the Eden model for cluster-cluster aggregation but due to obvious 
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steric constraints, the clusters cannot become compact as in the Eden model. Since 
each cluster can reach any point of space with the same probability before sticking, 
the model can also be viewed as the d ,  = 0 limit of cluster-cluster aggregation. The 
non-trivial fractal dimension of the clusters in this model should provide an upper 
bound for the fractal dimension of any physical process involving cluster-cluster 
aggregation (as long as the clusters stay rigid and do not rotate). 

Let us present here a hierarchical version of this chemically limited cluster-cluster 
aggregation model, similar, in spirit, to the hierarchical version for diffusion limited 
aggregation (Botet et a1 1984a). Direct simulation of cluster aggregation with a finite 
sticking probability and the crossover from chemically to diffusion limited aggregation 
have been considered by Kolb and Jullien (1984). Clusters are built on a square 
(hypercubic) lattice in two ( d )  dimensions. Successive collections of clusters of the 
same size 2 , 4 , 8 . .  . are built iteratively starting from a collection of No individual 
particles. Given the (k - 1)th collection of clusters, of N = 2k-’ particles, these old 
clusters are grouped into pairs to generate the clusters of the new collection. A new 
cluster is built as follows. Let us consider one pair, say cluster ( 1 )  and cluster (2). 
We consider all the possibilities for cluster ( 1 )  to stick to cluster (2), provided there 
is no double occupancy and that the new cluster is entirely connected by nearest- 
neighbour bonds. This can be done, for example, by moving cluster ( 1 )  around cluster 
(2) as shown in figure 1. (Note that no rotation is allowed.) All these distinguishable 
possibilities have the same probability and we choose one of these configurations, at 
random, as the new cluster. To estimate the size of a N-particle cluster, we have 
averaged the square of the radius of gyration: 

over all the clusters of one collection. The fractal dimension of the clusters, defined by 

RN - for N+co  

is estimated by extrapolating to N + 00 an effective fractal dimension D* obtained 
when comparing two successive collections 

D * = l n 4 / 1 n [ ( R : ~ - ~ ) / R ~ ] .  

A corrective term has been added to kill small size R-2 corrections (Ball and Jullien 
1984). 
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Figure 1. Aggregation of two clusters ( 1 )  and ( 2 )  of N particles to form a new cluster of 
2 N  particles. All possibilities with one or several connecting nearest-neighbour bonds 
between the two clusters are equiprobable, provided there is no overlap. Two such 
possibilities are shown. When all the possibilities are considered, a given fixed point of 
cluster ( 2 )  follows the curve shown, whose number of points C,  is calculated (see text). 
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We have considered 1024 trials, all starting with No= 512 particles, stopping after 
6 iterations, so that 8192 independent clusters of 64 particles were generated. The 
results for D* as a function of N-'  are reported in figure 2. The extrapolated fractal 
dimension is estimated to be D = 1.53 f 0.04, 1.98 f 0.04, 2.32 f 0.04 respectively for 
d = 2,3,4.  As expected these values are larger than all the values found previously in 
cluster-cluster aggregation models, either with brownian (d, = 2) (Jullien er a1 1984) 
or with linear (d, = 1) (Meakin 1984a) trajectories. 

We have also calculated the number of possibilities, CN, for two clusters of size N 
to stick, by simply averaging the number of possible configurations for each pair over 
all pairs of the collection. The results for CN as a function of N are given in a log-log 
plot (figure 3). A very linear behaviour is found such that 

C, - N Z 6  

with S =0.37, 0.58, 0.72 for d =2 ,  3, 4 respectively. The quantity C$'= N 6  is the 
number of sticking points per cluster. It is obvious that S must be smaller than one 
since only a fraction of all the points can be a sticking point. However it is expected 
that the upper found S = 1 must be recovered exactly above upper critical dimensions, 
when the clusters become transparent. For the present model, where d ,  = 0, the 
condition of transparence gives d, = 2Dc, where 0, = ln4/ln $ is the fractal dimension 
of the ghost model (Ball and Witten 1984). Our results for 6 plotted as a function of 
d (figure 4) are consistent with the theoretical prediction that S = 1 for d > 6.8. Note 
also that the following inequality is satisfied 

SD>D-1 .  

This means that the sticking points are localised in a volume which cannot be smaller 
than the volume of the surface. 

One must be careful when applying the above results, obtained in a, monodisperse, 
hierarchical model, to the real, polydisperse, physical situations. In the case of diffusion 
limited aggregation, the hierarchical model has recently been extended to polydisperse 
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Figure 4. Plot of the exponent 8 defined in the text as a function of d. The point (*) 
indicates the dimension above which one expects S = 1. 

situations by choosing the two coalescing clusters with some probability depending 
on their numbers of particles i and j .  The case where this probability varies as 
has been considered (Botet et a1 1984b). It was found, numerically, that the results 
of the hierarchical model are valid for all w smaller than f. For w > f, one cluster 
becomes larger than all the others and has a different fractal dimension, characteristic 
of particle-cluster aggregation. This effect corresponds to the gelation phenomenon 
predicted by the Smoluchowski equation (Leyvraz and Tschudi 198 1, Ernst et a1 1982, 
Hendriks et a1 1983, Spouge 1983, 1984). Let us consider a real physical situation of 
chemically limited cluster-cluster aggregation in which the clusters have a mobility 
depending on their number of particle i as i". Usually the diffusion constant varies 
as the inverse of the radius so that a = 1/D but let us consider any a for generality. 
The origins of the size dependence of the kernel K ,  entering the Smoluchowski equation 
are twofold: one is the relative velocity of the coalescing clusters, ( i Z n  + j2a )"2 ,  the 
other is proportional to the number of possibilities of sticking which can be written 
as C, - (U)', when S is defined as above. Thus one finds 

with 

Considering the 6 values calculated above the condition for gelation w > f is given by 

K , I , A J -  

2w = a +2S. 

a > 0.26 ford  = 2  

1~ > -0.17 for d = 3. 

Note that these conditions are not satisfied in realistic cases where a = - l /D,  when 
taking the D values reported above. Thus, we think that the results found in this letter 
can be applied reasonably to physical situations. The results of the direct simulations 
of chemically limited aggregation depending on the mobility exponent a (Kolb and 
Jullien 1984) are consistent with this inequality. 

The value D = 2, found for d = 3 could perhaps explain the result D = 2.1 of 
Schaeffer er a1 (1984), who considered the aggregation of small silica particles. 
However, one must note that other effects, such as restructuring of clusters, can also - 
explain an effective exponent larger than that predicted by diffusion limited aggregation 
( D  - 1.78). 
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